V-Bundles: Clustering Fiber Trajectories from Diffusion MRI in Linear Time
نویسندگان
چکیده
Fiber clustering algorithms are employed to find patterns in the structural connections of the human brain as traced by tractography algorithms. Current clustering algorithms often require the calculation of large similarity matrices and thus do not scale well for datasets beyond 100,000 streamlines. We extended and adapted the 2D vector field k– means algorithm of Ferreira et al. to find bundles in 3D tractography data from diffusion MRI (dMRI) data. The resulting algorithm is linear in the number of line segments in the fiber data and can cluster large datasets without the use of random sampling or complex multipass procedures. It copes with interrupted streamlines and allows multisubject comparisons.
منابع مشابه
Quantitative analysis of cerebral white matter anatomy from diffusion MRI
In this thesis we develop algorithms for quantitative analysis of white matter fiber tracts from diffusion MRI. The presented methods enable us to look at the variation of a diffusion measure along a fiber tract in a single subject or a population, which allows important clinical studies toward understanding the relation between the changes in the diffusion measures and brain diseases, developm...
متن کاملA unified framework for clustering and quantitative analysis of white matter fiber tracts
We present a novel approach for joint clustering and point-by-point mapping of white matter fiber pathways. Knowledge of the point correspondence along the fiber pathways is not only necessary for accurate clustering of the trajectories into fiber bundles, but also crucial for any tract-oriented quantitative analysis. We employ an expectation-maximization (EM) algorithm to cluster the trajector...
متن کاملProbabilistic Clustering and Quantitative Analysis of White Matter Fiber Tracts
A novel framework for joint clustering and point-by-point mapping of white matter fiber pathways is presented. Accurate clustering of the trajectories into fiber bundles requires point correspondence determined along the fiber pathways. This knowledge is also crucial for any tract-oriented quantitative analysis. We employ an expectation-maximization (EM) algorithm to cluster the trajectories in...
متن کاملSegmenting Fiber Bundles in Diffusion Tensor Images
We consider the problem of segmenting fiber bundles in diffusion tensor images. We cast this problem as a manifold clustering problem in which different fiber bundles correspond to different submanifolds of the space of diffusion tensors. We first learn a local representation of the diffusion tensor data using a generalization of the locally linear embedding (LLE) algorithm from Euclidean to di...
متن کاملSheet-Like White Matter Fiber Tracts: Representation, Clustering, and Quantitative Analysis
We introduce an automated and probabilistic method for subject-specific segmentation of sheet-like fiber tracts. In addition to clustering of trajectories into anatomically meaningful bundles, the method provides statistics of diffusion measures by establishing point correspondences on the estimated medial representation of each bundle. We also introduce a new approach for medial surface genera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015